Benedictine University professor’s egg research hatches new discoveries on environmental change

LISLE, Ill.Nov. 30, 2015 — Eggs. We eat them, decorate them and collect them.

But what if we could use eggs to go “back to the future” and find out what happened in the past that has affected and possibly is still affecting our current and future environment?

Monica Tischler, Ph.D., professor of Biology at Benedictine University, has solved this time paradox in a way that fully preserves historical artifacts. Except she didn’t use a specially fitted DeLorean. She used X-rays.

But it wasn’t just any ordinary X-rays. It was X-rays from one of the world’s most powerful sources – the Advanced Photon Source at Argonne National Laboratory. Tischler is one of many researchers using the U.S. Department of Energy’s (DOE) $467 million X-ray machine. The DOE reports that scientists from around the world go to Argonne to conduct potentially groundbreaking research.

The renowned laboratory is only a few miles from Benedictine, allowing Tischler the opportunity to break new ground without breaking the treasured, rare eggs she used to assess past environmental living conditions of native animals from across the United States.

An osprey egg being tested by Monica Tischler, Ph.D., professor of Biology at Benedictine University, during research conducted at Argonne National...
An osprey egg being tested by Monica Tischler, Ph.D., professor of Biology at Benedictine University, during research conducted at Argonne National…

Typically, researchers have to destroy their egg specimens by crushing them into fine particles so they can more easily examine the material. Doing so gives researchers a window into changes in the environment that can possibly predict future environmental changes including some that could prove hazardous to the Earth, as well as animal and human life.

Tischler first began theorizing in 2012 whether egg specimens could be analyzed using X-rays. She had access to thousands of egg specimens the late Benedictine professors Frs. Hilary and Edmund Jurica, O.S.B., had amassed over a period of decades. Those specimens are now part of the University’s Jurica-Suchy Nature Museum, which boasts a collection of more than 50,000 plants and creatures ranging from butterflies, beetles and spiders to a whale skeleton.

Monica Tischler, Ph.D., professor of Biology at Benedictine University, discusses the alignment of a sample during research using the Advanced Photon...
Monica Tischler, Ph.D., professor of Biology at Benedictine University, discusses the alignment of a sample during research using the Advanced Photon…

“We have eggs dating back 150 years,” Tischler said. “Before binoculars were invented and made bird-watching popular, many people collected bird eggs. Then when migratory bird acts were instituted in the late 19th century and made the practice of collecting eggs unfashionable and illegal, many collections were donated to museums.

Tischler, who worked closely with Fr. Theodore Suchy, O.S.B, who served as the University’s museum curator for more than 40 years, was partly inspired by the monk’s dedication to preserving the collection for future generations.

“Fr. Ted’s contribution was to take that teaching collection and make it into a museum for the public and the University,” Tischler said.

Now she has taken the use of the collection a step further.

“The next step would be to take this incredible collection and see what we can use for research,” she added. “I felt that is where my contribution could lie. While a microbiologist by training, I have a strong background in environmental research and toxicology.”

She wrote a proposal asking Argonne if she could use its advanced X-ray equipment to detect metals and inorganic pollutants in bird eggs. Argonne approved her request and in 2013, Tischler and her research team began detecting some pollutants using the X-ray beam.

But why eggs? And what does finding pollutants in the eggs really mean?

“When birds lay eggs, they excrete contaminants into the egg, and the contaminants in the eggshell reflect blood concentrates of those contaminants,” Tischler said. “These specimens represent a window into the past. The problem is that up until this research, all the techniques used to identify the contaminant in an eggshell were destructive. You take the eggshell, crush it, dissolve it in acid and examine it. It would be unfathomable to destroy these rare eggs for research.”

Using the Advanced Photon Source, Tischler designed a method to examine changes in an ecosystem by looking at these rare egg collections without damaging them. She tested the methodology with chicken eggs first to make sure X-rays would not damage the eggs.

The machine uses an electron storage ring that produces hard X-rays. The X-rays cause the elements to fluoresce, and analyzing the fluorescence allows the researchers to determine which elements are present. Researchers identified within the eggs naturally occurring elements such as calcium, iron and zinc, but also elements such as manganese, arsenic, bromine and lead, which can be considered contaminants.

Researchers examined the eggs of a variety of birds including eagles, ospreys, pied-billed grebes, common terns and peregrine falcons. Curiously, not all eggs (grebes, terns) taken from the same period and geographical location showed contaminants.

“With the eagle and osprey eggs, we could detect quite a bit of contaminants,” Tischler said. “My conclusion is my technique does not work on specimens that are lower on the food chain. It’s based upon what they eat.”

To prove her hypothesis, Tischler submitted a second proposal approved by Argonne to test a new set of eggs in order to ascertain whether the presence or absence of contaminants is related to the type of bird or its environment.

In the examination of eagle and osprey eggs from approximately the same era (circa mid-1910s), researchers found levels of arsenic and lead in addition to iron and zinc.

“You see the same contaminants in both types of bird, so it’s the environment – not the bird,” Tischler said. “The same species at the same time from different watersheds were exposed to different contaminants and we can show this. It’s a new technique to gain a window into the past to compare watersheds and compare contaminants over time.”

Benedictine undergraduate and graduate students were engaged in the research process, which developed a following on Snapchat. Student researchers helped switch out samples, operated the equipment and recorded results. This type of hands-on research has become commonplace for Benedictine students pursuing careers in the sciences.

Tischler plans to submit a manuscript with full results for publication in a scientific journal in the near future.

The College of Science at Benedictine University provides unique opportunities for undergraduate students to participate in research projects on campus, and internships through its ties to the regional science community, which includes Argonne, Fermi National Accelerator Laboratory and the Field Museum of Natural History. This experience allows students to gain expertise in a laboratory setting, connecting their classroom work to real-world applications.

For nearly a century, the science faculty at Benedictine has prepared its students to lead lives of meaning, purpose and distinction. Empowered by a values-centered Benedictine science education that emphasizes hands-on scientific exploration and discovery, alumni have gone on to realize their professional potential, build stellar careers and bring their talents to bear on society’s most pressing needs.

SOURCE  Benedictine University

A Century Ago, Einstein’s Theory of Relativity Changed Everything

PRINCETON, N.J. — By the fall of 1915, Albert Einstein was a bit grumpy.

And why not? Cheered on, to his disgust, by most of his Berlin colleagues, Germany had started a ruinous world war. He had split up with his wife, and she had decamped to Switzerland with his sons.

He was living alone. A friend, Janos Plesch, once said, “He sleeps until he is awakened; he stays awake until he is told to go to bed; he will go hungry until he is given something to eat; and then he eats until he is stopped.”

Worse, he had discovered a fatal flaw in his new theory of gravity, propounded with great fanfare only a couple of years before. And now he no longer had the field to himself. The German mathematician David Hilbert was breathing down his neck.

So Einstein went back to the blackboard. And on Nov. 25, 1915, he set down the equation that rules the universe. As compact and mysterious as a Viking rune, it describes space-time as a kind of sagging mattress where matter and energy, like a heavy sleeper, distort the geometry of the cosmos to produce the effect we call gravity, obliging light beams as well as marbles and falling apples to follow curved paths through space.

This is the general theory of relativity. It’s a standard trope in science writing to say that some theory or experiment transformed our understanding of space and time. General relativity really did.

Since the dawn of the scientific revolution and the days of Isaac Newton, the discoverer of gravity, scientists and philosophers had thought of space-time as a kind of stage on which we actors, matter and energy, strode and strutted.

With general relativity, the stage itself sprang into action. Space-time could curve, fold, wrap itself up around a dead star and disappear into a black hole. It could jiggle like Santa Claus’s belly, radiating waves of gravitational compression, or whirl like dough in a Mixmaster. It could even rip or tear. It could stretch and grow, or it could collapse into a speck of infinite density at the end or beginning of time.

Scientists have been lighting birthday candles for general relativity all year, including here at the Institute for Advanced Study, where Einstein spent the last 22 years of his life, and where they gathered in November to review a century of gravity and to attend performances by Brian Greene, the Columbia University physicist and World Science Festival impresario, and the violinist Joshua Bell. Even nature, it seems, has been doing its bit. Last spring, astronomers said they had discovered an “Einstein cross,” in which the gravity of a distant cluster of galaxies had split the light from a supernova beyond them into separate beams in which telescopes could watch the star exploding again and again, in a cosmic version of the movie “Groundhog Day.”

Hardly anybody would be more surprised by all this than Einstein himself. The space-time he conjured turned out to be far more frisky than he had bargained for back in 1907.

It was then — perhaps tilting too far back in his chair at the patent office in Bern, Switzerland — that he had the revelation that a falling body would feel weightless. That insight led him to try to extend his new relativity theory from slip-siding trains to the universe.

According to that foundational theory, now known as special relativity, the laws of physics don’t care how fast you are going — the laws of physics and the speed of light are the same. Einstein figured that the laws of physics should look the same no matter how you were moving — falling, spinning, tumbling or being pressed into the seat of an accelerating car.

One consequence, Einstein quickly realized, was that even light beams would bend downward and time would slow in a gravitational field. Gravity was not a force transmitted across space-time like magnetism; it was the geometry of that space-time itself that kept the planets in their orbits and apples falling.

It would take him another eight difficult years to figure out just how this elastic space-time would work, during which he went from Bern to Prague to Zurich and then to a prestigious post in Berlin.

In 1913, he and his old classmate Marcel Grossmann published with great fanfare an outline of a gravity theory that was less relative than they had hoped. But it did predict light bending, and Erwin Freundlich, an astronomer at the Berlin Observatory, set off to measure the deflection of starlight during a solar eclipse in the Crimea.

When World War I started, Freundlich and others on his expedition were arrested as spies. Then Einstein discovered a flaw in his calculations.

“There are two ways that a theoretician goes astray,” he wrote to the physicist Hendrik Lorentz. “1) The devil leads him around by the nose with a false hypothesis (for this he deserves pity) 2) His arguments are erroneous and ridiculous (for this he deserves a beating).”

And so the stage was set for a series of lectures to the Prussian Academy that would constitute the final countdown on his quest to grasp gravity.

Continue reading this article at: http://www.nytimes.com/2015/11/24/science/a-century-ago-einsteins-theory-of-relativity-changed-everything.html

 

Researchers Reveal How Climate Change Killed Mars

Climate change isn’t just something to worry about here on Earth. New research published today shows that Mars has undergone a dramatic climate shift in the past that has rendered much of the planet inhospitable to life.

About 3.8 billion years ago, Mars was a reasonably pleasant place. It had a thick atmosphere filled with carbon dioxide that kept it warm. Rivers trickled into lakes across its surface. Some researchers think there might even have been an ocean.

“It seems to have been a much more clement climate, a climate more suitable to sustaining life at the surface,” says Bruce Jakosky, a researcher at the University of Colorado, Boulder.

Nobody knows if there was life on Mars back then, but it’s now a hostile place. The water’s mostly gone. So is a lot of that cozy atmosphere. To try and find out what went wrong, Jakosky and other scientists have sent a spacecraft called the Mars Atmosphere and Volatile Evolution Mission, or MAVEN.

With each swing around Mars, MAVEN actually dips into the planet’s atmosphere, gathering data. The results are published today in two journals — Geophysical Research Letters and Science — and they reveal something remarkable: Mars’ atmosphere is actually leaking into space.

“It’s leaving at a rate about 100 grams per second,” Jaksosky says. “That doesn’t seem like much, but you add it up over a couple of billion years and it’s enough to remove the entire atmosphere.”

The cause is our friendly neighborhood star, the sun. It’s constantly shooting out high energy particles known collectively as the solar wind.

“[The wind] streams outward at a gas flow at about a million miles per hour,” Jaksosky says.

On Earth, our magnetic field blocks the solar wind. Particles become tangled in it before they can ever reach our precious air supply.

There is no magnetic field on Mars, so when the solar wind reaches the Red Planet, the atmosphere gets stripped away.

To view an excellent simulation by NASA demonstrating solar winds on Mars, read more at:
http://www.npr.org/sections/thetwo-way/2015/11/05/454594559/researchers-reveal-how-climate-change-killed-mars

The John Peel Lecture with Brian Eno

The annual John Peel Lecture invites a notable figure from the music industry to shape a debate and create insight around music and music-related media. Taking its inspiration from one of the greatest radio broadcasters of all time, and a figure who perpetually challenged the status quo, the John Peel Lecture has been a part of the Radio Festival since 2011. [Listen in popup window]

This year’s John Peel Lecture will examine the ecology of culture. Brian Eno will seek to demonstrate how the whole complex of individuals and institutions engaged in culture – artists, broadcasters, gallerists, promoters, DJs, managers, lawyers, fans – are symbiotically connected parts of a single huge organism which we call Culture. He will outline some of his thinking on this very unpredictable ecology and explore the interconnective relationships between the elements and components that combine to create our culture, and show how cultural processes confer essential and important benefits on society.

Brian Eno joins a list of high profile speakers who have delivered the John Peel Lecture. These are The Who’s Pete Townshend in 2011, who explored the implications of digital music media in an age of free downloads and a disposable attitude to music; Billy Bragg in 2012 who’s speech explored how music and radio need mavericks to keep moving forward; and in October 2013, Charlotte Church delivered an insightful speech on the theme of women and their representation in the music industry. Last year 6 Music’s Iggy Pop gave a speech on the topic of Free Music in a Capitalist Society.

Transcript: http://downloads.bbc.co.uk/6music/johnpeellecture/brian-eno-john-peel-lecture.pdf

Reference: http://www.bbc.co.uk/programmes/b06dcmxl

What Is Killing America’s Bees and What Does It Mean for Us?

Pollinators are vanishing, and a silent spring could become a horrifying reality. So why won’t the EPA do more?
By Alex Morris August 18, 2015

There was a moment last year when beekeeper Jim Doan was ready to concede defeat. He stood in the kitchen of his rural New York home, holding the phone to his ear. Through the window, he could see the frigid January evening settling on the 112-acre farm he’d just been forced to sell two weeks earlier. On the other end of the line, his wife’s voice was matter-of-fact: “Jimmy, I just want to say I’m sorry, but the bees are dead.”

By then, Doan was used to taking in bad news. After all, this was long after the summer of 2006, when he had first started noticing that his bees were acting oddly: not laying eggs or going queenless or inexplicably trying to make multiple queens. It was long after the day when he’d gone out to check his bee yard and discovered that of the 5,600 hives he kept at the time, all but 600 were empty. And it was long after he’d learned back in 2007 that he was not alone, that beekeepers all around the country, and even the world, were finding that their bees had not just died but had actually vanished, a phenomenon that was eventually named colony collapse disorder and heralded as proof of the fast-approaching End of Days by evangelicals and environmentalists alike. Theories abounded about what was causing CCD. Were bees, the most hardworking and selfless of creatures, being called up to heaven before the rest of us? Were they victims of a Russian plot? Of cellphone interference? Of UV light? Were they the “canary in the coal mine,” as the Obama administration suggested, signaling the degradation of the natural world at the hands of man? Possibly. Probably. No one knew.

Even to Doan, at the epicenter of the crisis, none of it had made a lick of sense. As a third-generation beekeeper, he and his family had been running bees since the 1950s, and it had been good money; in the 1980s, a thousand hives could earn a beekeeper between $65,000 and $70,000 a year in honey sales alone, not to mention the cash coming in from leasing hives out to farmers to help pollinate their fields. But more than that, it was a way of life that suited Doan. He’d gotten his first hive in 1968, at the age of five, with $15 he’d borrowed from his parents. He paid his way through college with the 150 hives he owned by then, coming home to tend them on the weekends. He was fascinated by the industrious insects. “It’s just that they are such interesting creatures to watch on a daily basis,” he says. “If you spend any time with bees, you develop a passion for them.”

Read more: http://www.rollingstone.com/politics/news/what-is-killing-americas-bees-and-what-does-it-mean-for-us-20150818#ixzz3jAeELvWb

Was Powerhouse: Heritage Garden and Amphitheater for Moorhead

About the Garden and Amphitheater

Designed by Rob Fischer, Kevin Johnson, and Su Legatt, the Heritage Garden for Moorhead will be located near the site of the decommissioned power plant along the Red River and adjacent to Woodlawn Park. Their plan seeks to recreate an environment that serves as an homage to the power plant while also acknowledging the important role it played in the development of Moorhead, MN. Its sculpted landscapes of low berms, garden beds, native plantings, and sculptural elements will draw people to the site and serve as a conduit between the river parkway and Woodlawn Park.

The artists aim to defy the perception that a former industrial site is not a suitable place for public use and enjoyment as well as defy the impact of repeated flooding of that area, which can make the riverside off limits for public use in years of spring flooding. Their concept of building a into the landscape also defies tendencies to forget our histories and the experiences of common people. To counteract forgetting, the artists are working with students in the Department of Art at Concordia College to gather both perennial plants and stories from Moorhead residents, focusing on neighborhoods near the power plant. Some plants may come from gardens that were left behind when houses recently were removed from the flood-prone riverside. These plants will find new homes in the Heritage Garden, and the recorded stories about the history of that area will be made available in the garden via QR codes.

The legacy of the power plant, which has provided power to Moorhead since 1896, will be made through concrete forms built into the new garden that echo the cement remnants at the plant. Machinery parts from the plant will be installed on the cement bases, becoming sculptural forms. The power plant is slated for demolition in summer 2014, and construction of the Heritage Garden will begin soon after.

The Heritage Garden will also include a new amenity for Moorhead, an earthen amphitheater, built into the hillside north of the main garden area. It will be used for events, such as musical performances and outdoor film screenings.

For four years, Plains Art Museum and the artists have collaborated with Moorhead Public Service, the City of Moorhead, Moorhead Parks and Recreation, Concordia College, and The Moorhead Power Plant Study Group to accomplish this new garden for Moorhead. The National Endowment for the Arts, Artplace America, the Bush Foundation, and Lake Region Arts Council have all provided support for this project.

Rob Fischer is a sculptor, living in Brooklyn, New York, and Park Rapids, Minnesota, whose work has been featured at the Whitney Museum of American Art, the Hammer Museum in Los Angeles, the Corcoran Gallery in Washington, D.C., and many other galleries and museums. Based in Brooklyn and originally from Minneapolis, Kevin Johnson is a sculptor and public artist who has designed numerous public art projects, gardens, and rain gardens nationally. A resident of Moorhead, Su Legatt teaches photography and graphic design in the Department of Visual Arts at North Dakota State University. She works in socially engaged art as well as studio practices and has led numerous projects in our region.

Reference: http://plainsart.org/learn/defiant-gardens/heritage-garden-and-amphitheater-for-moorhead-2/

See also: http://www.inforum.com/news/3767083-council-shows-support-building-japanese-garden-old-moorhead-power-plant-site

USA Wind Map

An invisible, ancient source of energy surrounds us—energy that powered the first explorations of the world, and that may be a key to the future. This map shows you the delicate tracery of wind flowing over the US.

The wind map is a personal art project, not associated with any company. We’ve done our best to make this as accurate as possible, but can’t make any guarantees about the correctness of the data or our software. Please do not use the map or its data to fly a plane, sail a boat, or fight wildfires :-)

Live Wind Map: http://hint.fm/wind/